

# Microsoft SQL Server Customized Training

## **CHOOSE YOUR PATH**

MINNESOTA STATE COLLEGE SOUTHEAST

**---**

# Contact

Ed Callahan ed@edcallahan.com

#### http://edcallahan.com/SQLTraining

## **CHOOSE YOUR PATH**

### Database Normalization and Relational Databases

Organize data into tables and columns (attributes) to:

- 1. Reduce data redundancy (duplicate data)
- 2. Improve data integrity

We end up with topic-specific tables that are linked together.

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHEAST

# Example - denormalized student data

See the DenormalizedData.xlsx

- Difficult to find a student with a given major
- Difficult to rename a major, or move major to new program
- Wasted space for students with only one major
- What if a student has a fourth major?
- Majors change over time ...
- Addresses, phone numbers, ...

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTH

### Structure of a normalized database

- Every table has one row per unique object (person, major, student term, etc) identified by a unique "primary key". Usually an integer, often arbitrary.
- No repeating groups of columns
- All columns in the table describe the object represented by the row's primary key
- No transitive dependencies (know value of one field based on another).
- Tables are linked together by their keys

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOL

### **Microsoft SQL Server**

Software to implement and manage relational databases. Others include:

- Oracle
- IBM DB2
- MySQL
- PostgresSQL, etc

**Based on ANSI standards** 

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHEAST

### **Installable Features of SQL Server**

- Database Engine (relational database management system)
- Reporting Services
- Analysis Services
- Integration Services
- Management Studio (client-side)

# CHOOSE YOUR PATH.

### Login types

- Windows (Active Directory)
- SQL logons

# **CHOOSE YOUR PATH**

### **SSMS Overview - Server**

- Databases (System and User)
- Security (Logins and Roles)
- Server Objects (Linked servers)
- Replication
- Management
  - Extended Events (Profiler)
  - Logs
  - Database Mail
- SQL Server Agent

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTH

### System Databases

- master system-level data (logon accounts, linked servers, location of other databases)
- model determines default values for newly created databases
- msdb used by SQL Server Agent for scheduling
- **tempdb** workspace for temporary objects

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTH

#### **SSMS Overview -Database**

- Diagrams
- Tables
- Views
- Programmability (stored procedures, functions)
- Security (Users, roles, schemas)

# CHOOSE YOUR PATH.

### **SSMS Overview - Table**

- Columns
- Keys (primary and foreign)
- Constraints
- Triggers
- Indexes

# **CHOOSE YOUR PATH**

### **Data Definition Language (DDL)**

- CREATE tables
- ALTER tables
- DROP tables

# Good interactive SSMS tools for this, which can generate code

# CHOOSE YOUR PATH.

### Data Manipulation Language (DML)

- INSERT
- UPDATE
- DELETE
- SELECT

# **CHOOSE YOUR PATH.**

### Data Control Language (DCL)

- GRANT
- REVOKE

Often done use SSMS interactive tools

# CHOOSE YOUR PATH.

### Create table with primary key

#### **CREATE TABLE dbo.StudentHistory**

StudentHistoryld int IDENTITY(1,1) NOT NULL, StudentId int NOT NULL, TermID int NOT NULL, ClassCode char(2) NULL, TermCreditsAttempted int NULL, TermCreditsEarned int NULL, TermGPA numeric(4, 2) NULL, **CONSTRAINT StudentHistory PK PRIMARY KEY CLUSTERED** StudentHistoryId ASC

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHE

### **Create table with primary key**

- Schema
- Data types
- NULL / NOT NULL
- Auto-increment field
- Primary Key definition

#### See CreateTable.sql

# CHOOSE YOUR PATH.

### Schemas

Collection of items in a database, a "namespace"

- Useful for managing permissions
- Default schema is dbo
- Each user can have a different default schema
- sys and information\_schema are schemas holding metadata tables and views
- Complete way to reference a table is: linked\_server.database.schema.table

# **CHOOSE YOUR PATH**

#### **Create Schema**

#### use ReportBuilderTraining

go

#### create schema evc

# **CHOOSE YOUR PATH**

### Data Types

- char, nchar
- varchar, nvarchar, varchar(max)
- int, tinyint, bigint
- float, double
- numeric, decimal
- datetime
- text, image

https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTH

### **Primary Keys**

- Simple vs. Composite
- Natural vs. Arbitrary

# Primary keys should be stable, not changed once set

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHE

### Designer

Set identity primary key Set default value Script CREATE TABLE statement

# CHOOSE YOUR PATH.

### **Enable Table Designer**

| Options                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ? | $\times$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|
| <ul> <li>Environment</li> <li>Source Control</li> <li>Text Editor</li> <li>Query Execution</li> <li>Query Results</li> <li>Designers</li> <li>Table and Database Designers</li> <li>Analysis Services Designers</li> <li>SQL Server AlwaysOn</li> <li>SQL Server Object Explorer</li> </ul> | Table Options <ul> <li>Qverride connection string time-out value for table designer updates:</li> <li>Transaction time-out after:</li> <li>30 seconds</li> <li>Auto generate change scripts</li> <li>Warn on null primary keys</li> <li>Warn about difference detection</li> <li>Warn about tables affected</li> <li>Prevent saving changes that require table re-creation</li> <li>Diagram Options</li> <li>Default table view:</li> <li>Column Names</li> </ul> |   | ~        |

### **CHOOSE YOUR PATH**

MINNESOTA STATE COLLEGE SOUTHEAST

----

### **Column Headers in Query Results**

#### Options

×

?

| > Environment                          | Specify the options for displaying the result set in grid format. |
|----------------------------------------|-------------------------------------------------------------------|
| > Text Editor                          | Include the query in the result set                               |
| > Query Execution                      | □ Include column headers when copying or saving the results       |
| <ul> <li>Query Results</li> </ul>      | Quote strings containing list separators when saving .esv results |
| ✓ SQL Server                           | Discard results after execution                                   |
| Results to Grid                        | Display results in a separate tab                                 |
| Results to Text<br>Multiserver Results | Switch to results tab after the query executes                    |
| > Analysis Server                      | Maximum Characters Retrieved                                      |
| Designers                              | Non XML data: 65535                                               |
| SQL Server AlwaysOn                    | XML data: 2 MB ×                                                  |
| SQL Server Object Explorer             |                                                                   |
|                                        | <u>R</u> eset to Default                                          |
|                                        | OK Cancel                                                         |
|                                        |                                                                   |

MINNESOTA STATE COLLEGE SOUTHEAST

⊢--

#### More DDL commands

• See DDL.sql

**DROP** table\_name

#### ALTER TABLE table\_name ADD column\_name datatype

ALTER TABLE table\_name DROP column\_name

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHEAST

#### More DDL commands

ALTER TABLE table\_name ALTER column\_name datatype

ALTER TABLE Persons ADD CONSTRAINT PK\_Person PRIMARY KEY (ID)

## **CHOOSE YOUR PATH.**

#### Indexes

#### Clustered vs. Unclustered Unique vs. Not Unique

# Ordered, so faster to search. Typically better than a table scan.

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTH

### **Creating an Index**

CREATE NONCLUSTERED INDEX [NC\_Name] ON [dbo].[Test]

[FirstName] ASC, [LastName] ASC

- Also CREATE UNIQUE NONCLUSTERED ...
- We will discuss creating indices when we talk about optimizing queries

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHEAST

### **Foreign Keys**

A form of constraint

ALTER TABLE Orders ADD FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)

• ON DELETE CASCADE, ON UPDATE

We will discuss when looking at many-to-many joins

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHEAST

### Data Manipulation Language (DML)

- INSERT
- UPDATE
- DELETE
- SELECT

# CHOOSE YOUR PATH.

#### SELECT

SELECT column1, column2, column3 FROM table\_name WHERE condition ORDER BY column1, column2, column3

# CHOOSE YOUR PATH.

### Functions

- CAST and CONVERT and Implicit Conversions
- Datetime functions
- String functions
- Numeric Functions
- CASE statement

#### See Functions.sql

https://docs.microsoft.com/en-us/sql/t-sql/functions

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTH

#### **WHERE Statement**

- >, <, =, !=
- BETWEEN
- IN, NOT IN
- LIKE, NOT LIKE
- AND, OR, NOT

See Where.sql

# CHOOSE YOUR PATH.

#### NULL

- Tri-state logic
- IS NULL, IS NOT NULL

#### See NULLS.sql

# **CHOOSE YOUR PATH**

### JOINS

- INNER
- LEFT JOIN
- RIGHT JOIN
- FULL OUTER JOIN

#### See Joins.sql

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHEAST

### **Order of Execution**

- 1. FROM
- 2. JOINS (top to bottom)
- 3. WHERE
- 4. SELECT
- 5. ORDER BY

# CHOOSE YOUR PATH
# **Evaluating Performance and Optimizing Queries**

- Typically use Execution Plans to evaluation queries and compare performance
- Address issues with query structure and indices
- Do not rely on run time as it depends on caching and statistics

See Performance.sql

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHEA

## Many-to-Many Joins



#### See ManyToMany.sql, ManyToMany2.sql

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHEAST

## **Sub-queries**

See Subqueries.sql

## **CHOOSE YOUR PATH**

MINNESOTA STATE COLLEGE SOUTHEAST

▶--

## **Correlated subqueries**

See CorrelatedSubqueries.sql

## **CHOOSE YOUR PATH**

MINNESOTA STATE COLLEGE SOUTHEAST

≽----

## Window Functions and CTEs

• CTEs help organizationally, but often at a performance cost. They are not a compiler hint.

see WindowFunction.sql

# **CHOOSE YOUR PATH.**

## **Set Functions**

- UNION and UNION ALL
- INTERSECT
- EXCEPT

See SetFunctions.sql

# CHOOSE YOUR PATH.

## **Aggregate Queries**

SELECT column1, column2, AGG\_FUNC(column3) FROM table1 WHERE condition GROUP BY column1, column2 HAVING condition ORDER BY column1, column2

See AggregateQuery.sql

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHEAS

## **Order of Execution**

- 1. FROM
- 2. JOINS (top to bottom)
- 3. WHERE
- 4. GROUP BY
- 5. HAVING
- 6. SELECT
- 7. ORDER BY

# **CHOOSE YOUR PATH**

#### INSERT

#### INSERT

#### INTO table\_name (column1, column2, column3, ...) VALUES (value1, value2, value3, ...);

# **CHOOSE YOUR PATH.**

## **Insert/Select**

INSERT INTO table2 (column1, column2, column3, ...) SELECT column1, column2, column3, ... FROM table1 WHERE condition;

• Select statement can be complex

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHE

#### **SELECT INTO and Temp tables**

SELECT \* INTO newtable FROM oldtable WHERE condition;

- #temp
- ##temp

# **CHOOSE YOUR PATH.**

## Other methods to populate files

- GUI
- Import
- Applications

# CHOOSE YOUR PATH.

#### UPDATE

**UPDATE** *table\_name* **SET** *column1* = *value1*, *column2* = *value2*, ... **WHERE** *condition*;

Can also be combined with a SELECT-like statements

See UpdateDelete.sql

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHEAST

#### DELETE

# **DELETE FROM** *table\_name* **WHERE** *condition*;

Can also be combined with a SELECT-like statements

# CHOOSE YOUR PATH.

#### MERGE

- Combines insert/update/delete into one operation
- See: <u>https://www.simple-talk.com/sql/learn-sql-server/</u> <u>the-merge-statement-in-sql-server-2008/</u>
- I've encountered significant performance issues caused by the delete portion of the merge

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTH

#### Transactions

- BEGIN TRANSACTION
- ROLLBACK TRANSACTION
- COMMIT TRANSACTION
- Locks
- Dirty Reads

# **CHOOSE YOUR PATH**

#### Deadlock

See Deadlocks 01.sql and Deadlocks 02.sql

- 1. Process A locks Address table
- 2. Process B locks Phone table
- 3. Process A now waiting on Process B to commit so Phone table is unlocked
- 4. Process B now waiting on Process A to commit so Address table is unlocked

A waiting on B and B waiting on A -- Deadlock

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHEAST

#### **Event Monitor**

#### See Deadlock Event Monitor.sql to create Event Monitor

**Replaces Profiler system** 

# **CHOOSE YOUR PATH.**

## Security

- Logins Windows users, Windows groups or SQL users. Defined at the server level and granted server-level permissions
- Users principals scoped to the database level, usually mapped to a login

Often a one-to-one relationship, with the same name Relationship can break with database moved to a new server

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHEAST

## sa Login and dbo User

- and NT AUTHORITY\SYSTEM
- Special built-in principals with elevated rights

# CHOOSE YOUR PATH.

## **Built-in Roles**

Server-level roles:

<u>https://docs.microsoft.com/en-us/sql/relational-da</u> <u>tabases/security/authentication-access/server-level</u> <u>-roles</u>

Database-level roles:

https://docs.microsoft.com/en-us/sql/relational-da tabases/security/authentication-access/database-le vel-roles

## **CHOOSE YOUR PATH**

## **Security Precedence**

GRANT, DENY and REVOKE

- Explicit Deny overrides explicit Grants
- Except ... "A table-level DENY does not take precedence over a column-level GRANT. This inconsistency in the permissions hierarchy has been preserved for backward compatibility."

<u>https://docs.microsoft.com/en-us/sql/t-sql/statemen</u> <u>ts/grant-object-permissions-transact-sql</u>

## **CHOOSE YOUR PATH**

## **Granting/Denying Permissions**

See Security.sql

<u>https://docs.microsoft.com/en-us/sql/t-sql/stateme</u> <u>nts/grant-object-permissions-transact-sql</u>

https://www.simple-talk.com/sql/database-adminis tration/sql-server-security-cribsheet/

# **CHOOSE YOUR PATH**

## **Using Roles to control access**

See Roles.sql

AD Domain Groups is an alternative approach

## **CHOOSE YOUR PATH.**

MINNESOTA STATE COLLEGE SOUTHEAST

▶---

## Programmability

- Views
- Triggers
- Scripts
- Stored Procedures
- Scalar Functions
- Table Functions
- CLR functions

# CHOOSE YOUR PATH

## Programmability

- Variables
- IF THEN ELSE
- WHILE
- Cursors
- Dynamic SQL

See Variables\_LogicFlow.sql See Cursors\_DynamicSQL.sql

# CHOOSE YOUR PATH.

## **Procedures vs Functions**

#### **Stored Procedures can:**

- May optionally take arguments
- May optionally return results
- May make database and other system changes (insert, update, etc)
- Cannot be used in a SQL statements
- Good error handling
- Can create and use temp tables within

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUT

## **Procedures vs Functions**

#### Functions can:

- Optionally take arguments
- Must return a value
- May not make system changes to database
- Can be used in a SQL statement
- No temp tables or try/catch blocks

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTH

## **Stored Procedure Example**

Simple table update with error handling

See StoredProcedure.sql

## **CHOOSE YOUR PATH.**

## Error Handling and Nested Transactions

Technically, transactions can be nested and the SQL compiler will not complain. However, a ROLLBACK rolls back to the very first BEGIN, so nesting doesn't act as expected.

See NestedTransactions.sql

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHE

## **Stored Procedure Example II**

Taking parameters and returning data

See StoredProcedure2.sql

## **CHOOSE YOUR PATH.**

# Elevated permissions through stored procedures and views

A user with SELECT permissions on a view, or EXECUTE permissions on a stored procedure, can see the data returned by those objects even if they do not have permission to the underlying tables.

# CHOOSE YOUR PATH.

# Handling SSRS parameters in a stored procedure

Table value function example

See:

- fnSplitFunction.sql
- StoredProcedure3.sql

# **CHOOSE YOUR PATH.**

## Triggers

#### See Triggers.sql

See:

<u>https://docs.microsoft.com/en-us/sql/t-sql/stateme</u> <u>nts/create-trigger-transact-sql</u>

# **CHOOSE YOUR PATH**

## **SQL Injection Attacks**

See SQLInjectionAttack.sql

See:

- https://www.owasp.org/index.php/SQL\_Injection
- https://www.w3schools.com/sql/sql\_injection.asp

# CHOOSE YOUR PATH.

## **Backup and Restore**

see BackupRestore 01.sql

Remember, the directory locations of the server's, not your workstation's. You are typically backing up to a server's drive, which you may not have direct permissions to.

#### CHOOSE YOUR PATH. MINNESOTA STATE COLLEGE SOUTHEAST
### **Recovery Models**

In SSMS, Database Properties > Options

Determines how long to keep data in the transaction log file

- Simple
- Full

https://www.mssqltips.com/sqlservertutorial/2/sql-s erver-recovery-models/

### Simple recovery mode

- Transactions immediately removed from transaction log
- Can do complete and differential backups
- Allows for smaller transaction log files, but increases risk of data loss

### Full recovery mode

- All transactions kept in transaction log until it is backed up or truncated
- Can recover to a point-in-time
- Can lead to very large transaction files, especially if there is no scheduled transaction log backup
- Can do complete and partial backups as well as transaction log backups

See BackupRestore 02.sql

### **Restore Order**

- 1. Last complete backup
- 2. Last differential backup
- 3. All transaction backups since last differential, in order

# CHOOSE YOUR PATH.

### **Backup Strategy**

One strategy:

- 1. Nightly full backup
- 2. Hourly differentials
- 3. Transaction logs every ... ten minutes?
- 4. Retain backups
  - a. last week's
  - b. Last 4 Fridays
  - C. Last 4 first Friday of month
  - d. Last 4 first Friday of year

### **Restore to point of failure**

For Full recovery model only

See RestoreBackup 03.sql

https://docs.microsoft.com/en-us/sql /relational-databases/backup-restore

/restore-database-to-point-of-failure-full-recovery

## **CHOOSE YOUR PATH**

MINNESOTA STATE COLLEGE SOUTHEAST

### **Controlling size of log file**

Log files automatically increase in size, and will claim more size that it needs each time it expands.

Normally you do not need to shrink log files manually. Except ... every DBA at some point has had databases in Full recovery mode that he hasn't been backing up :-(

See LogFileSize.sql

### **Install Concerns**

- Splitting installation across drives
  - Log and Data files on different drives
  - tempdb on a different drive
- handling sa account
- handling default port

#### See

http://sqlmag.com/storage/sql-server-storage-best-p ractices

# CHOOSE YOUR PATH.

MINNESOTA STATE COLLEGE SOUTHEAST

### Maintenance Plans and SQL Server Agent

https://docs.microsoft.com/en-us/sql/relational-dat abases/maintenance-plans/maintenance-plans

See IndexFragmentation.sql

See

<u>https://docs.microsoft.com/en-us/sql/t-sql/databas</u> <u>e-console-commands/dbcc-checkdb-transact-sql</u>

## **CHOOSE YOUR PATH**

MINNESOTA STATE COLLEGE SOUTHEAST

### Enabling SQL Agent and Maintenance Plans

sp\_configure 'show advanced options', 1; GO RECONFIGURE; GO sp\_configure 'Agent XPs', 1; GO RECONFIGURE GO

#### See EnableAgent.sql

### **Monitoring SQL Performance**

- Extended Events
- Spotlight <u>https://www.spotlightessentials.com/</u>
- Redgate SQL Monitor -<u>http://www.red-gate.com/products/dba/sql-moni</u> <u>tor/</u>

Important to monitor trends